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Appendix A: Proof of Lemma 5.3

We prove the second inequality as an illustration. Because there is only a finite number of subsets

of Z, it is enough to prove that

> yLit) > e

1€, ()

for some e which depends on Z,(t).

Denote by J.(t) the subset of J such that C(j) NZ.(t) # 0 for j € J.(t). Then i € Z.(t) and
j € S(i) implies 7 € Z,(t) and j € J«(t). Also, i € Z,(t) and j € J.(t)\S(¢) implies p;; = 0. As a
result, we can write
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From (9) and (17),
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This strict inequality is because, for j € J.(t), if C(5) N (Z«(¢))¢ = 0, then Zzez ) ( )< 1=
> iez.(1) Tij; and there exists at least one j, such that C(j) N (Z.(t))¢ # ; for such j, from (36),

D it (1) Ti,j(t) =0<Xier.) T

O



Appendix B: Proof of Proposition 1

We first prove (a). For ease of reference, we list the four steps for proving (a) again:
Step 1: There exists a finite ¢; > to, such that for all ¢ > ¢1, Z*(t) # {2};
Step 2: For ¢ > t1, such that Q(¢) is not a fixed point, Z?:l LQl(t) > € for some €1 > 0;
Step 3: For all t > to, W(t) = W (to);

Step 4: Assume that Q(t2) is a fixed point, then for all t > t2, Q(t) = Q(t2) = ¢* (W (to)).

Proof of Step 1: If Z*(to) # {2}, let t1 = to; otherwise, note that if Z*(¢) = {2}, then from (36)
and (35), T{;(t) = T4y (t) = 0 and T4, (t) = Tyy(t) = 1. As a result,

Q1(t)>0 and Q5(t) >0
and

Q5(t) = Ao — (1 — Pao) (a1 + pi22)
< A2+ Propnnayy + Poopsowzy — (1 — Pao) (2125 + p12225;)
=0,

thus, starting from tg, Qo decreases while Q1 and Q3 are nondecreasing. As a result, in a finite
time (which can be bounded), say at time t1, Z*(t1) # {2}.

Next assume there is at > t1, such that Z*(¢) = {2}. Denote by € := Cé(%( D _max;_ 3 M >

C5(Q2(t1)) Ci(Qi(t) there exists
3 v

a time so € [t1,t] such that %2;(80)) — max;—13 Cil@i(so)) _ $ and for all s € [so, 1], %22(3)) -

Y;
max;—i3 C/(QZ(S)) . However, similar to the argument above, (QQ(S)) decreases on [sg, t| and
(Q2(t)) Ci(Q:(t))

max;—1,3 (Q (s) does not decrease. As a result, one cannot get —maxj=13 —= & = €

%

0, then due to the continuity, and from the fact that < max;—13

Hence, we must have Z*(t) # {2} for all ¢ > ¢;.

Proof of Step 2: First note that Q;(t) > .Q;(¢) and Q;(t) < *Q;(t). If i € Z.(t), then Q;(t) =
«Qi(t), hence Q’(t) = .Q\(t). Similarly, if i € Z*(¢), then Q\(t) = *Q%(t). Finally note that all Q!
have the same sign, and all *Q; have the same sign.

Because Q(t) is not a fixed point and I*(t) # {2}, we know that Z,(t) can be one of these: {1},
{2}, {3}, {1,2} and {2,3}. We discuss these sets case-by-case.



1. Z.(t) = {2}: from (35) and (36), we have T{,(t) = 1, T4, (t) = 1, T3, (t) = 0 and Th4(t) = 0,
hence
«Q5(t) =Q5(t) = g + Projiny + Psojuzo
>A2 + Propn1a]y + Paapzarsy — (1 — Paa) (21251 + p32739) = 0.

Because all Q) (t) have the same sign, then

3
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2. Z,(t) = {1} or Z,(t) = {3}. We use Z.(t) = {1} to illustrate. There are two subcases:

(a) Z*(t) = {3}:
from (35) and (36), we have Ty, (t) = 1, T4y (t) = 1, T{;(t) = 0 and T4y(t) = 0, hence

Q1 (t) = Q1 (t) = M + Ps1psa + Porpiar > 0,

the last strict inequality is because at least one of these three terms is positive. Then
St Qi) = Q4 (1) > 0.
(b) Z*(t) = {2,3}:
First note that from (36), Q}(t) > 0. Also note that Q4(t) and Qj(t) have the same
sign because Q4(t) = *Q4(t) and Q4(t) = *Q4(t), and *Q4(¢) has the same sign as
*@Q4(t). From the first inequality in Lemma 5.3 (Xier ) viLL(t) < —e1), we conclude
that both Q4(t) and Qj(t) are negative. From the second inequality in Lemma 5.3
(Xiez. ) viLi(t) > €1), then Q)(t) is lower bounded by a strictly positive constant.
Then 307, 4 Qj(t) > Qi (t) = Q1 (¢) > 0.
3. T.(t) = {1,2} or Z.(t) = {2,3}. We use Z.(t) = {1, 2} to illustrate.
From (35) and (36), Thy(t) = 1, Tay(t) = 0 and T, (¢) + T4, (t) = 1. For Q1 and Q2:
Q' (t) =M1 + Paipizg + Porpion Toy (1) — (1 = Pra)pai Th; (t),
Q3 (t) =Ag + Papizg + Propnn Ti1 (1) — (1 — Pag)pan Ty (t).

From (35), T4, (t) + T4, (t) = 1. Then (using (9))

1-P1 — Py Q1(t)
(l/fa V;) : _
—Pg 11— Py Q5(1)
—1
_ 1-P1 — Py A1+ Psipso §
=(v1,v3) - - %1
P2 1— Py A2 + P30



Note that
AL+ Poi(p2125) + pio2wy) + Paipsarzy — (1 — Pi)pney; =0,
A2 + Prapn1w]y + Papizawss — (1 — Paz) (2175 + pi22w3) = 0.
Thus
A1+ Paipse + Porpo1wyy — (1 — Pr)paiely = Paipsa(1 — 239) — Po1poa®yy,
A2 + Psapzz + Prapn1a]y — (1 — Pag)po17s) = Psapza(1 — 39) + (1 — Pag) o2 w5s.

Thus, using (9) and (16) (z3, + z%, = 1),

. 1-Pn — Py A1+ P31p32
(v1,v3) - -
—Py 1—- Py A2 + Psopizo
1
1-Pn1 —Px — P>
>(vi,v3) - X 122739
—Pia 1— Py 1— Py

* *

Note that Q| (t) = Q| (), Q4(t) = «Q4(t), and Q' (t) and .Q%(t) have the same sign, they
must be both positive and also

-1

.. [1=Pu —Pa Q1 (t) . .
(1,v3) - _ Z Vg X [122T 2.
—Pip 1— P «Q5(1)
Then 1
3. _ 1—-Pn —Px Q1 (1)
D LQit) =Y .Qi(t) > Cvf,v3) i
i—1 i—1 —Pia 11— Py «Q5(t)

for an appropriate positive constant C'. Thus, Z?:l +Ql(t) has a (positive constant) lower

bound.

Proof of Step 3: From (34),
Wty =Y 21— Tj(1).
JET 1€C(j)
With the assumption that there are at least two nonzero Q;(t), for each server 7, Ziec(j) Qi(t) > 0.
As a result, from (35),
1- Y T(t)=0, for jeJ.

1€C(j)



Thus, W’(t) = 0, which can be implied by a special case that there are at least two nonempty

queues from the following lemma.

Lemma 7.1. Assume that at a reqular time t, at least two Q;(t) are nonzero, then under any
service policy such that (35) holds, we have
W'(t) =Y yi Qi) = 0.
1€T
The lemma is direct and we omit the proof. From Lemma 7.1, it is enough to prove that for
all t > tg, there are at least two Q;(t) being nonzero. We consider (tg, 1] and (t1,00). For (t1,00),

the result is obvious because Z?:l «QL(t) > 0. For (o, t1], note that

Q1 (1) + Q5(t) = A1 + A3 + (Po1 + Pa3)(p21 + pa2) > 0,

because at least one of the above terms on the right hand side should be positive.

Proof of Step 4: Assume it does not hold. Then there is one ¢ such that Q(t) # Q(t2). Because
W(t) = W(to), we can conclude that 32_ .Q;(t) < 320, ¢*(W(to)). Let e = 320, ¢F (W (to)) —
523 .Qi(t), then due to the continuity, there is a time s € [t2,t] such that Y25 .Qi(s) =
% af(W(to)) — § and for u € (s,t), S0, «Qi(u) < S0, ¢ (W (to)) — 5. However, from step 2,
Z?Zl +QL(+) is always positive, thus it cannot decrease to Z?:l q; (W (to)) — €. Hence, we arrive at
a contradiction.

Now we prove (b). Assume the conclusion in (b) does not hold. Then there is a ¢ such that
Q(t) # 0. Denote by € = Z?:1 y7Qi(t). Due to the continuity, there must be a time t; € (0,t)
such that S22 y*Qi(t1) = 5. Then from step 3 above, for all s > t;, S8y Qi(s) = 5. Hence,

we arrive at a contradiction. O

Remark 6. Step 3 gives a different result from that in Mandelbaum and Stolyar (2004) (see the
bound using a constant K > 1 in their Theorem 3). The significance of this result is that even if
the initial status is not a fized point, the workload has no jump; therefore the proposed policy is
always optimal. This is mainly due to the fact that there are no nonbasic activities according to the

system structure. ]



Appendix C: Proof of Lemma 5.4

The proof is similar to the one for Lemma 6 in Chen and Ye (2012), and we provide it here

for completeness. From Proposition 1, there is some time T sufficiently long, so that in any

hydrodynamic limit, Q(t) will approach the fixed-point state from an initial state Q(0) with W (0) <

xX+c+1lfort>T. Let

T = Tytetr. (47)

The initial state bound x 4+ ¢+ 1 is used as the subscript to remind us that 7" varies on the initial

state.

1. The case ¢ = 0:

Property (a):

Property (b):

Property (c):

From assumption (38), (W"%(0),Q"°(0)) — (x,¢*(x)) as r — oo. Hence, it follows from
the hydrodynamic convergence (Lemma 5.2) and the uniform attraction (Proposition 1),

that as r — oo,
(W0 (), Q"0 (u)) = (W(u), Q(w)) = (x,q"(x)), wo.c. inu € [0,T]. (48)

(Because the limit is unique, the convergence is along the whole sequence of r.) Let r
be sufficiently large, such that |[W™%(u) — x| < minsez y7e/2 and |Q™°(u) — ¢*(x)| < €/2
for all w € [0, T]. Then, we have
Q" (u) — ¢*(W™(w))] <IQ™ () — ¢" ()| + l¢" (W™ (w)) — ¢" ()] (19)
<5+ W) — x|/ miny <e,
for all w € [0,T]. Hence, property (a) holds for £ = 0 when r is sufficiently large.

It follows from (48) that W0 (u) is close to x for all u € [0,T] when r is sufficiently

large, which leads to property (b) for £ = 0.

From the assumption of cost function C, ¢} (z) will not be zero unless x = 0. Then by

49), for any small enough ¢y > 0 with ¢’ (¢) > €9 and large enough r
(2
Q' (w) 2 f (W0(u)) ~ eo.

The increase of ¢} (-) implies that ¢f(W™%(u)) > ¢F(¢) when W"0(u) > €. Thus, for any
ue [0,T], Q7%(u) >0 for i € Z and

2



2. The case £ = 1,---,[\/rd/T|: Suppose, to the contrary, there exists a subsequence R of

{r}, such that for any r € R, at least one of the properties fails to hold for some integers

¢ € [1,4/r6/T]. Then, for any r € Ry, there exists a smallest integer, denoted by /¢, in

the interval [1,1/rd/T], such that at least one of the properties fails to hold. To reach

a contradiction, it suffices to construct an infinite subsequence Ro C Rq, such that the

properties hold for ¢ = ¢, for sufficiently large r € Ro.

Property (a):

Property (c):

Property (b):

From the contradictory assumption, we know that the properties hold for £ = 0,1,--- , {,.—
1, r € Ry. Specifically, for £ = ¢, — 1, we have W™ ~1(0) < x + ¢+ 1, for all » € R;.
Hence, it follows from the hydrodynamic limit, that there exists a further subsequence
Ro C Ri, such that (W"=1(w), Q"1 (u)) — (W(u),Q(u)), w.o.c., as 7 — oo along
R with W(0) < x +c+ 1. Then Q(u) = ¢*(W(u)) for all u > T by (47). Hence, for

sufficiently large r € Ro,

Q7 () — " (W ()| =|Q7 (u+ T) = " (W + 7))
<IQ™ w4+ T) — Q(u+T)
g (W(u+T)) =g (W + T))

<e

for all w € [0,T]. Hence, property (a) holds with ¢ = £, for sufficiently large r € Ra.

It is similar to the proof of Property (a) in the case £ = 0. From property (a) in this
case above, for small enough ¢y > 0 with ¢(e) > ¢ and all u € [0,7], Q:’gr(u) >
g (W™t (u)) — ¢p and then Q;’er (u) > 0 when W™ (u)) > e. Thus, for any u € [0, 7],
Y7l (u) — Y0 (0) = Z?:l Z5 (U= ec) TjT’eT(u)) = 0. Hence, property (c) holds for ¢,
with sufficiently large r € Ra.

Fix any ug € [0,7]. We consider two mutually exclusive cases: (i) The condition in (c)
holds for all £ =0,1,--- ,4,_1, and for £ = £, with u < ugp; (ii) the condition in (c) does
not hold for some ¢ € [0,4, — 1], or £ = ¢, but with some u < ug.

In the first case, Y"™(u) does not increase in u € [0,T)], for £ = 0,--- , £, — 1 and for



¢ =/, with u € [0,up]. As a result, for sufficiently large r,

lr—1
W™ (ag) =W0(0) + Y~ (W(T) = W™ (0)) + (W™ (ug) — W™ (0))

/=1
lr—1

=TW0) + Y ((y")" X™(T) = (") X™(0))
/=1

+ ()X (ug) = (y7)T X" (0)
=W0(0) + (y*) " X" (uo) — (y*)" X"1(0)

=W (r) + (4") " X7 (7 + 6T fr +uo/r) = (y) X (r +T/r)

<(x+) + (W) X (T +6T/r +uo/r) — (y*)" X(7) +

<(x+e+(ct+te)<x+ec+1.
Here, the second equality is from Property (c); the fourth equality is from (26) and (27);
and the last two inequalities are from the condition of this lemma and the fact that
X" — X* wo.c.
In the second case, if there is a u € [0, ug], such that W™ (u) < ¢, then let £0 = ¢, and
let u, = sup{0 < ' < ug : W™ (u) < €}; otherwise, let £ (among 0,1,--- £, — 1)
be the largest integer, such that the condition in (c) does not hold. Moreover, let
ur = sup{0 < o/ < T : W& («/) < €}. Then, we can conclude that Y™ (u) does not
increase for ¢, = 59 and u > u, or £, > 69.

According to the definition of u,, we can find a time point u, such that

— 0
up —e <uf <up, and Wr’fr(ui) <e.



Then we have

W (u)

Lr—1
+ D (WHT) = W) + (W (u) = WP (0))
£=£041
=W (g) Y () = Y0 () 4 () X () = (") X ()
lr—1
+ (y*)TXr,ZQ (T) _ (y*)TXr,E + Z TXTE ) (y*)TXT,Z(O))
2=00+1

+ ()X () — (y*) X7 (0))
=W () + Y () — Y70 (ul) + ((y) T X (w) — ()T X0 ()
SVT/T’Z +Zz e+ [( TXT( +€TT/r+u/r)f(y*)T)?T(T+£2T/r+uf~/r)]
JjET

<X+ e+ e+ (W)X (T + 6T/r +ufr) — () X(r+ OT/r + up/r) +
JjET
<X+ Z et (c+e) <x+etl
JjeET
Hence, we have shown that the properties hold for ¢ = ¢, when r € Ro is sufficiently large, which

contradicts the definition of the subsequence Ros. U



